NAME
iverilog-fpga — FPGA code generator for Icarus Verilog

SYNOPSIS
iverilog -tfpga [iverilog-options] sourcefile

DESCRIPTION
The FPGA code generator supports a variety of FPG#ces writing EDIF output depending on the-tar
get. You can select the architecture of theiae and the detailed part name. The architecture is used to
select library primities, and the detailed part name is written into the generated file for the usemsf do
stream tools.

The code generator isvioked with the -tfpa flag to verilog. It understands the part= and the arch= param-
eters, which can be set with the -p flagwvefilog:

iverilog -parch=virt -ppart=v50-pq240-6 -tfpgfoo.vl

This example selects theariéx architecture, and ge the detailed part number as v50-pgq240-6. The output
is written into a.out unless a different output file is specified with the -o flag.

OPTIONS
iverilog -tfpga accepts the following options:

-parch=family
Thefamily setting further specifies the target device fan8ge FPGA FAMILIES belw.

-ppart=device
This specifies a specific device in the form of a detailed part nuiftbeformat of this number
is defined by the partendor In most cases, the device string is taken literally and written as is to
the EDIF output.

FPGA FAMILIES
The following is a list of architecture types that this code generator supports.

[pm This is a device independent format, where the gates gicedgpes as defined by the LPM 2 1
0 gecification. Some backend tools mayetdtkis format, or users may write interface libraries to
connect these netlists to the device in question.

Thelpm family is the default if no other is specified.

virtex If this is selected, then the output is formatted as an EDIF 2 0 O file, suitablétéor dlass
devices. This is supposed to kmdhat you are targeting aiftéx part, So can generate prinviss
instead of using external macros. It includes theTdR internal library and should work prop-
erly for ary Virtex part.

virtex2 If this is selected, then the output is EDIF 2 0 O suitable fidex/Il and Mrtex-11 Pro devices. It
uses the VIRTEX2 librarybut is very similar to the Virtetarget.

EDIF ROOT PORTS
The EDIF format is explicit about the intace into an EDIF file. The code generator uses that control to
generate an explicit interface definition into the design. (This is *not* the same a&1BeoPa part.) The
generated EDIF interface section contains port definitions, including the proper direction marks.

\ersion $Date2004/10/04 01:10:57 $ 1



With the (rename ...) s-exp in EDIiEis possible to assign arbitraryxteto port names. The EDIF code
generator therefore does not resort to the mangling that is needed for internal symbols. The base name of
the signal that is an input or output is used as the name of the port, complete with the proper case.

However, dnce the ports are single bit ports, the name of vectors includes the string "[0]" where the number
is the bit number~or example, the module:

module main(out, in);
output out;
input [2:0] in;
[...]

endmodule
creates these ports:

out OUTPUT
in[0] INPUT
in[1] INPUT
in[2] INPUT

Target tools, including Xilinx Foundation tools, understand the [] characters in the name and recollect the
signals into a proper bus when presenting the vector to the user.

PADS AND PIN ASSIGNMENT
The ports of a root module may be assigned to specific pins, or to a generic pad. If a signal (that is a port)
has a PAD attribute, then the value of that attribute is a list of locations, one for each bit of the signal, that
specifies the pin for each bit of the signal. For example:

module main( (* PAD = "P10" *) output out,
(* PAD ="P20,P21,P22" *) input [2:0] in);

[..]

endmodule

In this example, portout” is assigned to pin 10, and pofin’’ is assigned to pins 20-22. If the architecture
supports it, a pin number of 0 means let the back end tools choose a pin. The format of the pin number
depends on the architecture family being targeted, so for example Xilinx famitesi¢ale the name that

is associated with the "LOC" attribute.

NOTE: If a module port is assigned to a pin (and therefore attachedAd)atien it is *not* connected to
a port of the EDIF file. This is because the PAD (and possibly IBUF or OBUF) would becoméran e
driver to the port. An error.

SPECIAL DEVICES
The code generator supports the "cellref" attebattached to logic devices to cause specific device types
be generated, instead of the usual device that the code generator might gesreeaample, to get a clock
buffer out of a Verilog buf:

buf my_gbuf(out, in);
$attribute(my_buf, "cellref", "GBUF:O,I");

The "cellref" attribute tells the code generator to use tmngell. The syntax of the value is:

Version $Date2004/10/04 01:10:57 $ 2



<cell type>:<pin name>,...

The cell type is the name of the library part to use. The pin names are the names of the type in the library
in the order that the logic device pins are connected.

EXAMPLES
COMPILING WITH XILINX FOUNDATION/iSE Compile a single-file design with command line tools lik
Sso:

% iverilog -parch=virte -o foo.edf foo.vl

% edif2ngd foo.edf foo.ngo

% ngdbuild -p v50-pg240 foo.ngo foo.ngd
% map -0 map.ncd foo.ngd

% par -w map.ncd foo.ncd

AUTHOR
Steve Wiliams (steve@icarus.com)

SEE ALSO
iverilog(1), <http://www.icar us.com/eda/verilog/>

COPYRIGHT
Copyright © 2003 Stephen Williams

This document can be freely redistributed according to the terms of the
GNU General Public License version 2.0

\ersion $Date2004/10/04 01:10:57 $ 3



